Technical & Economic Feasibility of Hybrid MicroGrids

Hak-Ju Lee / Woo-Kyu Chae / Jong-Nam Won

KEPCO Research Institute, Korea

Jong-Chan Lee / Dae-Yun Kwon / Do-Kyung, Yoo

Green Tech Co., Ltd / Green Information System Co., Ltd

이주|그린테크 / GREEN TECH
이주|그린정보시스템 / GREEN INFO

Power Business at Island in Korea

Status of Islands in Korea

Section	Island connecting	Islands with gei	-	
	with KEPCO's power line	Complete power supply	Incomplete power supply	lotal
The number of islands	312	98	29	439
The number of population	373,925	46,782	153	420,860
The number of households	161,596	23,664	172	185,432
Power supplier	KEPCO	KEPCO Local Government Residents	Residents	

* Incomplete power supply means that the power is not supplied for 24 hours

Status by Operation Types in Korea

	Complete Supply					
Section	KEPCO	Local Govern.	Residents	Sub total	Supply	Total
# of Island	63	22	13	98	29	127
# of Population	43,887	2,778	117	46,782	153	46,935
# of households	22,367	1,186	111	23,664	172	23,836
The Capacity of Generators(kW)	91,295	7,468	417	99,180	1,331	100,511
# of generators	214	62	13	289	33	322

[Source: 'Power Supply Business for the Islands and Remote Places' WWEA 2014]

The number of islands by year

Generator capacity by year

[Source: 'Power Supply Business for the Islands and Remote Places' WWEA 2014]

Status by Generating Types in Korea

Section	Diesel			Solar					
	KEPCO	Local Govern ments	Residents	Sub total	KEPCO	Local Govern ments	Residen ts	Sub total	Total
# of islands	54	19	16	89	9	3	26	38	127
The capacity of generators(kW)	90,790	7,355	3,639	101,784	505	113	535	1,153	102,937
The rate (%)	88.2	7.2	3.5	98.9	0.5	0.1	0.5	1.1	100

* The rate is calculated by the capacity of generators

Island Power Business Features by KEPCO

- > Improving efficiency and optimizing load management by ESS utilization
- Saving man-power by utilization of renewable energy (wind, solar) and Micro Grid
- > Securing preemptive management skills by active introduction of renewable energy

Remote Micro Grid in Gasado

About Gasado

- distance from main land : 6km
- area : 6.4km²
- households : 168
- population : 286
- generators : diesel genset 100kW x 3
- ► load
 - average : 96kW
 - maximum : 173kW
 - minimum : 61kW
- ► facilities : radar station, light house, water supply
- maximum load by air conditioner, heater at night

Remote MG Project in Gasado by KEPCO

• Inverter-based power system with automatic operation by EMS

Operation Results of Remote MG in Gasado

- Fuel saving result : 81.7% (compare to 2014)
 - before (diesel power plant) : 155,511L
 - after (micro grid) : 28,387L

- Power Quality(frequency) maintain ratio :100%
 - before (diesel power plant) : 57%
 - after (micro grid) : 100%

[Source: 'Design and Field Tests of an Inverted Based Remote MicroGrid on a Korean Island' Energies 2015]

Hybrid Micro Grid in Geochado

Hybrid MG versus Isolated MG

	Diesel Power Plant	Hybrid MG	Isolated MG
Main Power Generation	Diesel	Diesel + WT or Diesel + PV	Renewable Energy (WT, PV etc)
Frequency Control	Diesel	Diesel or WT + Load Control	Inverter + EMS
Voltage Control	Diesel	Diesel or Sync Phase Modifier	Inverter
V/f Maintain Rate	Low	High	Very High
Energy Storage	Fuel	Fuel + small ESS	ESS + small Fuel
EMS	Х	Δ	О
Investment	Low	Low/Med/High	Very High
Operation Cost	Very High	Medium	Low

[Source: KEPCO Research Institue]

Hybrid Micro Grid Operation Concept

- Battery system and renewable energies are introduced into existing diesel power system
 - Cost Saving of energy (reduction of fuel usage)
 - Efficiency improvement of diesel generator
 - Improvement of V/f maintaing ratio

Geochado Hybrid MG System Diagram

[Source: KEPCO Research Institue]

About Geochado

Economic Evaluation of Hybrid MG

	COE (Won/kWh)	TOC (Billion Won)	Operation (billion Won/y)	Investment (Billion Won)	Fuel Use (kL)	Diesel Operation (hour)
Before MG	920	14.91	0.93	1.0	343	8,760
After MG	850	13.78	0.74	2.66	222	3,308

• Generation quantity

	Diesel	WT	PV	Surplus	Total	Ren.
Generation (MWh)	739	264	135	11.7	1,150	31.8%
Diesel 180 PV 160 WT 140 ≥ 100 ≥ 100 80 60 40 20 0	Jan Feb	Mar Apr	May Jun	Jul Aug	Sep Oct	Nov Dec

[Source: 'Economic Evaluation of Remote MicroGrid in Geochado', ISGC2015]

Next Challenge _ working with DC based MG

2nd Phase: DC based Hybrid Micro Grid

Comparison Losses between AC and DC Grid

DC based Hybrid MG Operation Concept

[Source: LVDC based Remote Microgrid Project, KEPCO & LSIS]

Will be operated as AC based Hybrid MG

[Source: LVDC based Remote Microgrid Project, KEPCO & LSIS]

Thank you for your attention ~

JongChan Lee

+82-01-5373-0002

jc@greeninfo.kr bluemac@gmail.com

Discussion